Exercise 7

Find the general solution for the following initial value problems:

$$
u^{\prime \prime}-2 u^{\prime}+2 u=0, \quad u(0)=1, u^{\prime}(0)=1
$$

Solution

This is a homogeneous linear ODE with constant coefficients, so the solution is of the form, $u=e^{r x}$.

$$
u=e^{r x} \quad \rightarrow \quad u^{\prime}=r e^{r x} \quad \rightarrow \quad u^{\prime \prime}=r^{2} e^{r x}
$$

Substituting these into the equation gives us

$$
r^{2} e^{r x}-2 r e^{r x}+2 e^{r x}=0
$$

Divide both sides by $e^{r x}$.

$$
r^{2}-2 r+2=0
$$

Use the quadratic formula to solve for r.

$$
r=\frac{2 \pm \sqrt{4-8}}{2}=1 \pm i
$$

$r=1-i$ or $r=1+i$, so the general solution is

$$
u(x)=C_{1} e^{(1-i) x}+C_{2} e^{(1+i) x}=e^{x}\left(C_{1} e^{-i x}+C_{2} e^{i x}\right)
$$

But this can be written in terms of sine and cosine by using Euler's formula. Therefore, the general solution is

$$
u(x)=e^{x}(A \cos x+B \sin x)
$$

Because we have two initial conditions, we can determine A and B.

$$
\begin{array}{rlrl}
u^{\prime}(x) & =e^{x}[(A+B) \cos x+(-A+B) \sin x] \\
& & & \\
u(0) & =e^{0}(A)=1 & & A=1 \\
u^{\prime}(0) & =e^{0}(A+B)=1 & & \rightarrow
\end{array} B=0.80
$$

Therefore,

$$
u(x)=e^{x} \cos x
$$

We can check that this is the solution. The first and second derivatives are

$$
\begin{aligned}
u^{\prime} & =e^{x}(\cos x-\sin x) \\
u^{\prime \prime} & =-2 e^{x} \sin x .
\end{aligned}
$$

Hence,

$$
u^{\prime \prime}-2 u^{\prime}+2 u=-\overline{2 e^{x}} \sin x-2 e^{x}(\cos x-\sin x)+2 e^{x} \cos x=0,
$$

which means this is the correct solution.

